Without using Taylor’s Theorem, represent the following functions as power series expanded about 0 (i.e., in the form \(\sum_{n=0}^\infty a_nx^n\)).
(a)
\(\ln\left(1-x^2\right)\)
(b)
\(\frac{x}{1+x^2}\)
(c)
\(\arctan \left(x^3\right)\)
(d)
\(\ln\left(2+x\right)\)
Hint.
\(2+x=2\left(1+\frac{x}{2}\right)\)
Problem3.3.3.
Let \(a\) be a positive real number. Find a power series for \(a^x\) expanded about 0.
Hint.
\(a^x=e^{\ln\,\left(a^x\right)}\)
Problem3.3.4.
Represent the function \(\)sin \(x\) as a power series expanded about \(a\) (i.e., in the form \(\sum_{n=0}^\infty a_n\left(x-a\right)^n\)).
Hint.
\(\sin x=\sin \left(a+x-a\right)\text{.}\)
Problem3.3.5.
Without using Taylor’s Theorem, represent the following functions as a power series expanded about \(a\) for the given value of \(a\) (i.e., in the form \(\sum_{n=0}^\infty a_n\left(x-a\right)^n\)).