Skip to main content Contents Index
Prev Up Next \(\newcommand{\imp}{\ \Rightarrow\ }
\newcommand{\dx}[1]{\,{\rm d}#1}
\newcommand{\dfdx}[2]{\frac{\text{d}{#1}}{\text{d}{#2}}}
\newcommand{\abs}[1]{\left|#1\right|}
\def\limit#1#2#3{{\displaystyle\lim_{#1\rightarrow #2}#3}}
\newcommand{\eps}{\varepsilon}
\newcommand{\unif}{\stackrel{unif}{\longrightarrow}}
\newcommand{\ptwise}{\stackrel{ptwise}{\longrightarrow}}
\newcommand{\CC}{\mathbb {C}}
\newcommand{\DD}{\mathbb {D}}
\newcommand{\RR}{\mathbb {R}}
\newcommand{\QQ}{\mathbb {Q}}
\newcommand{\NN}{\mathbb {N}}
\newcommand{\ZZ}{\mathbb {Z}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 7.4 Additional Problems
Problem 7.4.1 .
Find the Integral form, Lagrange form, and Cauchy form of the remainder for Taylor series for the following functions expanded about the given values of \(\,a\text{.}\)
(a)
\(f(x)=e^x\text{,}\) \(a=0\)
(b)
\(f(x)=\sqrt{x}\text{,}\) \(a=1\)
(c)
\(f(x)=(1+x)^\alpha\text{,}\) \(a=0\)
(d)
\(f(x)=\frac{1}{x}\text{,}\) \(a=3\)
(e)
\(f(x)=\ln x,\ a=2\)
(f)
\(f(x)=\cos x, a=\frac{\pi}{2}\)