Skip to main content

Section 7.4 Additional Problems

Problem 7.4.1.

Find the Integral form, Lagrange form, and Cauchy form of the remainder for Taylor series for the following functions expanded about the given values of \(\,a\text{.}\)

(a)

\(f(x)=e^x\text{,}\) \(a=0\)

(b)

\(f(x)=\sqrt{x}\text{,}\) \(a=1\)

(c)

\(f(x)=(1+x)^\alpha\text{,}\) \(a=0\)

(d)

\(f(x)=\frac{1}{x}\text{,}\) \(a=3\)

(e)

\(f(x)=\ln x,\ a=2\)

(f)

\(f(x)=\cos x, a=\frac{\pi}{2}\)