Theorem 7.1.1.
If there exists a real number \(B\) such that \(|f^{(n+1)}(t)|\leq B\) for all non–negative integers \(n\) and for all \(t\) on an interval containing \(a\) and \(x\text{,}\) then
\begin{equation*}
\limit{n}{\infty}{\left(\frac{1}{n!}\int_{t=a}^xf^{(n+1)}(t)(x-t)^n\dx{ t}\right)}=0
\end{equation*}
and so
\begin{equation*}
f(x)=\sum_{n=0}^\infty\frac{f^{(n)}(a)}{n!}(x-a)^n.{}
\end{equation*}


