Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\Arctan}{Arctan}
\DeclareMathOperator{\Arcsin}{Arcsin}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccsc}{arccsc}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\csch}{csch}
\def\abs#1{\left|#1\right|}
\def\tallstrut{\rule{0mm}{1.1\baselineskip}}
\def\approach#1{{\left(\rightarrow{}#1\right)}}
\def\CancelToRed#1#2{\textcolor{red}{{\cancelto{#1}{#2}}}}
\newcommand{\eps}{\varepsilon}
\newcommand{\RR}{\mathbb {R}}
\newcommand{\QQ}{\mathbb {Q}}
\newcommand{\NN}{\mathbb {N}}
\newcommand{\ZZ}{\mathbb {Z}}
\def\DD{{\bf{}D}}
\def\arccot{{\rm{}arccot}{}}
\def\Arctan{{\rm{}Arctan}{}}
\def\Arcsin{{\rm{}Arcsin}{}}
\def\arcsec{{\rm{}arcsec}{}}
\def\arccsc{{\rm{}arccsc}{}}
\def\halmos{\mbox{\raggedright\rule{0.1in}{0.1in}}}
\def\eval#1#2#3{\left.\strut{}#1\right|_{#2=#3}}
\def\geneval#1#2#3{\left.\strut{}#1\right|_{#2#3}}
\def\mineval#1#2{\left.\strut{}#1\right|_{#2}}
\def\bigeval#1#2#3{\left.\strut{}#1\right|_{#2=#3}}
\def\ftceval#1#2#3#4{\eval{#1}{#2}{#3}^{#4}}
\def\inverse#1{#1^{-1}}
\def\dx#1{\thinspace{\mathrm d}#1}
\def\dfdx#1#2{\frac{\dx{#1}}{\dx{#2}}}
\def\dfdxat#1#2#3{\eval{\dfdx{#1}{#2}}{#2}{#3}}
\def\partialfx#1#2{\frac{\partial{#1}}{\partial{#2}}}
\def\partialfxn#1#2#3{\frac{\partial^{#3}{#1}}{\partial{#2}^{#3}}}
\def\dfdxn#1#2#3{\frac{\text{d}^{#3}{#1}}{\text{d}{#2}^{#3}}}
\def\limit#1#2#3{{\displaystyle\lim_{#1\rightarrow #2}#3}}
\def\tlimit#1#2#3{{\displaystyle\lim_{#1\rightarrow #2}}#3}
\def\tlimitX#1#2#3#4{{\displaystyle\lim_{\underset{#4}{#1\rightarrow #2}}}#3}
\def\rtlimit#1#2#3{{\tlimitX{#1}{#2}{#3}{#1\gt{}#2}{}}}
\def\ltlimit#1#2#3{{\tlimitX{#1}{#2}{#3}{#1\lt{}#2}{}}}
\def\limitX#1#2#3#4{{\displaystyle\lim_{\underset{#4}{#1\rightarrow #2}}#3}}
\def\rlimit#1#2#3{{\limitX{#1}{#2}{#3}{#1\gt{}#2}{}}}
\def\llimit#1#2#3{{\limitX{#1}{#2}{#3}{#1\lt{}#2}{}}}
\def\limitatinf#1#2{\limit{#1}{\infty}{#2}}
\def\limitatninf#1#2{\limit{#1}{-\infty}{#2}}
\def\lprime#1{{#1^{\prime}_{\scriptscriptstyle L}}}
\def\rprime#1{{#1^{\prime}_{\scriptscriptstyle R}}}
\def\lhopeq{\stackrel{L'H}{=}}
\newcommand{\ParamEqTwo}[2]
{
\left\{
\begin{array}{c}
{#1}\\
{#2}
\end{array}
\right\}
}
\newcommand{\ParamEqThree}[3]
{
\left\{
\begin{array}{c}
{#1}\\
{#2}\\
{#3}
\end{array}
\right\}
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 8.1 Initial Value Problems
The differential equation, for example,
\(\dfdx{y}{x}=2x\text{.}\)
The initial value. So called because when the independent variable is time we usually know the value of our function
initially .
A common way to create new functions using Calculus is by defining the new function to be the solution(s) of a specified IVP.
Example 8.1.1 .
We’ve seen that when we differentiate the formula \(y=x^2\) we get the differential equation \(\dx{y} = 2x\dx{x},\) or
\begin{equation}
\dfdx{y}{x}=2x.\tag{8.1}
\end{equation}
If we did not already know that the function
\(y(x)=x^2\) satisfies
equation (8.1) we could give a name to the solution (sqr
\((x)\text{,}\) perhaps?) and by fiat, define
\(\text{sqr}(x)\) to be whatever function solves this equation. But there is a problem. The solution of
equation (8.1) is a multifunction, remember? To choose a single branch we need to impose an initial condition.
Drill 8.1.2 . Find the Pattern.
Solve the IVP that consists of the differential equation
\begin{equation*}
\dfdx{y}{x}=2
\end{equation*}
paired with each initial condition. Graph your solutions.
\(\displaystyle y(0)=-10\)
\(\displaystyle y(-1)=1\)
Find the solution of the the IVP
\begin{align*}
\dfdx{y}{x} =2x, \amp{}\amp{}y(x_0)=y_0
\end{align*}
based on your solutions in parts (i) through (vi). Assume that \(x_0\) and \(y_0\) are fixed, but unspecified constants.
Of course simply naming the function tells us nothing about it but the IVP itself can give us a some insight. For example since
\(\dfdx{y}{x}=2x\lt 0\) when
\(x\lt 0\text{,}\) the slope of the graph of
\(y(x)\) is also negative when
\(x\lt 0\text{,}\) Similarly, the slope of the graph of
\(y(x)\) is positive when
\(x\gt 0\text{.}\)
We already knew that since we have the formula
\(y(x)=\text{sqr}(x)=x^2\) but this won’t be true in the next section.