Skip to main content

Section 14.4 The Product Rule

A rigorous proof of the Product Rule is also fairly complex, but it does not suffer from the kind of technical problems we encountered in the proof of the Chain Rule.

Proof.

We start with two observations. The first is that
\begin{align} f^\prime(x)=\amp{}\limit{h}{0}{\frac{\textcolor{red}{f(x+h)}-\textcolor{blue}{f(x)}}{h}}\notag\\ \amp{} = \limit{h}{0}{\frac{\textcolor{red} {\alpha(x+h)\beta(x+h)}-\textcolor{blue}{\alpha(x)\beta(x)}}{h}}\tag{14.8} \end{align}
and the second is that, in limit form, equation (14.7) is
\begin{align} f^\prime(x)=\alpha(x)\amp{}\left(\limit{h}{0}{\frac{\beta(x+h)-\beta(x)}{h}}\right)\notag\\ \amp{}+\beta(x)\left(\limit{h}{0}{\frac{\alpha(x+h)-\alpha(x)}{h}}\right)\text{.}\tag{14.9} \end{align}
It appears then that our goal is simply to reorganize equation (14.8) until it looks like equation (14.9). We say “simply” but it will only appear to be simple after we have succeeded. We will proceed slowly.
Observe that if we subtract \(\alpha(x+h)\beta(x)\) from the blue part of the numerator in equation (14.8) we get
\begin{equation*} \alpha(x)\beta(x)-\alpha(x+h)\beta(x)= \textcolor{blue}{-\beta(x)\left(\alpha(x+h)-\alpha(x)\right)}, \end{equation*}
whereas if we add \(\alpha(x+h)\beta(x)\) to the red part of the numerator in equation (14.8) we get
\begin{equation*} \alpha(x+h)\beta(x+h)+\alpha(x+h)\beta(x) = \textcolor{red}{\alpha(x+h)\left(\beta(x+h)-\beta(x)\right)}. \end{equation*}
This suggests that we should both add and subtract the expression \(\alpha(x+h)\beta(x)\) to the numerator of equation (14.8). Doing this and factoring as we’ve indicated above we get
\begin{equation*} f^\prime(x)=\limit{h}{0}{ \frac{ \textcolor {red} {\alpha(x+h)\left(\beta(x+h)-\beta(x)\right)} - \left[\textcolor{blue}{-\beta(x)\left(\alpha(x+h)-\alpha(x)\right)}\right] }{h} }, \end{equation*}
By Theorem 14.1.1 we can separate this into the limit of the two fractions as follows:
\begin{align*} f^\prime(x)=\amp{}\tlimit{h}{0}{\left( \frac{\textcolor{green}{\alpha(x+h)}\left(\textcolor{red}{\beta(x+h)-{\beta(x)}}\right)}{\textcolor{red}{h}}\right)}\\ \amp{} + \rlimit{h}{0}{\left(\frac{\textcolor{green}{\beta(x)}\left(\textcolor{blue}{\alpha(x+h)-\alpha(x)}\right)}{\textcolor{blue}{h}}\right)}\text{.} \end{align*}
From Lemma 14.1.17 (applied to \(\alpha (x)\)) and Theorem 14.1.2 we see that
\begin{align*} f^\prime(x)=\amp{} \underbrace{\left[ \limit{h}{0}{\textcolor{green}{\alpha(x+h)}} \right]}_{=\alpha(x)}\underbrace{\left[ \limit{h}{0}{ \left( \textcolor{red}{\frac{\beta(x+h)-\beta(x)}{h}} \right) } \right]}_{=\beta^{\prime}(x)}\\ \amp{} + \underbrace{\left[ \limit{h}{0}{\textcolor{green}{\beta(x)}} \right]}_{\beta(x)} \underbrace{\left[ \limit{h}{0}{ \left( \textcolor{blue}{\frac{\alpha(x+h)-\alpha(x)}{h}} \right) } \right]}_{\alpha^\prime(x)}\text{.} \end{align*}
and therefore
\begin{equation*} f^\prime(x)=\alpha(x)\beta^\prime(x)+\beta(x)\alpha^\prime(x). \end{equation*}